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Calculations are presented for two-dimensional BBnard convection between free 
bounding surfaces for ranges of Rayleigh and Prandtl numbers. The variables are 
expandedin a series consisting of the eigenfunctions of the stability problem and the 
system is truncated to take into account only a limited number of terms. The ampli- 
tudes of the eigenfunctions are evaluated by numerical integration of the resulting 
non-linear equations. In  all cases considered, the system achieves a steady state 
with the motion consisting of a single large cell. Results for Nusselt number us. 
Rayleigh number are given for a range of Prandtl number varying between 0.01 and 
100 and show that heat flux increases slightly with decreasing Prandtl number. The 
calculations agree with those of Kuo where the ranges of Rayleigh number overlap. 
A simple heuristic argument based on the assumption that turbulent boundary 
layers exist is also given and the conclusions of the latter indicate that heat flux 
should decrease with decreasing Prandtl number. Thus the behaviour is qualita- 
tively different from that of the calculations. The reason appears to be associated 
with the fact that the single large cell in the computed cases enables the fluid to 
accelerate through repeated cycles until it achieves a steady state with the amplitude 
of the motion much larger than could be acquired by a single turbulent blob 
free-falling in the gravitational field. 

1. Introduction 
Two recent investigations have shown that, when a layer of fluid is heated 

uniformly from below and cooled from above, the resulting convection takes place 
as a pattern of two-dimensional rolls. Schluter, Lortz & Busse (1965) have treated 
the theoretical problem by taking as a basic state a fluid with a steady pattern of 
cellular motions and then perturbing the given pattern with an arbitrary disturb- 
ance. They showed that the only pattern which is stable to the perturbations is 
a system of convecting rolls. 

In  a recent seminar at Harvard University L. Koschmieder exhibited cellular 
patterns which were established under very carefully controlled conditions. When 
the fluid had a free upper surface, the resulting motion consisted of a remarkably 
uniform pattern of hexagons. When both boundaries were rigid, two-dimensional 
rolls were established. The influence of the shape of the lateral boundaries was 
reflected in the orientation of the rolls. When the boundaries were circular, the 
pattern consisted of concentric circular rolls (cylindrical symmetry). When the 
boundaries formed a square, the pattern tended to be straight rolls, although in this 
case each set of two parallel boundaries tended to establish two-dimensional rolls 
so that only in the region away from the boundaries did one of the sets of rolls 
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dominate. The principal point, however, is that convection did tend t o  establish 
itself as a two-dimensional pattern. 

This paper contains a study of two-dimensional BBnard convection with the 
upper and lower boundaries free (slip). Although the latter boundary conditions are 
unrealizable in the laboratory, they may be more appropriate for large-scale geo- 
physical and astrophysical phenomena where convective layers are most often 
bounded by a free surface or by a region of stable fluid. The rigid-boundary case is 
also being investigated and will be reported later. 

In  the following three sections the procedure for solving the two-dimensional 
problem is described. Briefly, the method involves an analysis of the different fields 
by means of a truncated Fourier set (for this problem this is equivalent to a 
truncated set of eigenfunctions). Once the external parameters are given it is 
possible, in principle, to derive a solution which is valid to any preassigned order of 
accuracy. Practically, there is a limitation to the values of the parameters which 
can be treated. These limits are discussed in connexion with specific problems. 

In  $ 5  we discuss the solutions which have been obtained for ordinary BBnard 
convection by means of the method proposed in 04 2-4. We deduce information 
about the situation where the rolls are fixed in space and the basic wave-number is 
assigned, a priori. The interesting questions which arise because of three- 
dimensionality and consequent possible phase shifts of the convecting pattern are 
beyond the scope of this work. However, within the limitations of the approach we 
can answer a variety of questions. 

The method of solution is set up so as to enable us to derive dependable results for 
Rayleigh numbers, R, up to 30 times the critical Rayleigh number, Rc (the latter 
being defined as the minimum value at  which the system is unstable to infinitesimal 
perturbations). Hence, we deduce information about the heat flux and the structure 
of the temperature and velocity fields for highly non-linear flows. The calculations 
are compared with those derived by previous investigators and, since we can impose 
confidence limits on the present results, a comparison can be made between the 
techniques of this paper and those of earlier workers. 

The solutions are carried out for Prandtl numbers ranging over more than four 
orders of magnitude so that we can test the dependence of heat flux and other 
properties of the system on Prandtl number. At fixed values of the Rayleigh 
number and the Prandtl number we also calculate the heat flux as a function of 
wave-number. 

2. The mathematical system 
The lower boundary ( z  = 0) of the fluid is maintained at temperature To and the 

temperature of the upper boundary ( z  = d )  is To - AT. We write the total tempera- 
ture as 

I n  (2.1) the final term represents the deviations of the temperature from the linear 
(conductive) profile. 

The equations (all variations with respect to y are assumed t o  vanish) are the 
two-dimensional Boussinesq equations for the conservation of momentum, 

!&tal = To - ATz/d -I- T(x,  Z, t ) .  (2.1) 

&/at + v .  Vv = -p;lVp - g(kp’/p,) + VPV, (2 .2)  
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the conservation of mass, 
aupx + awpz = 0, 

the linear equation of state for the fluctuating density, 

and the equation for the conservation of heat, 

Here, v is the two-dimensional velocity vector with components (u,w) in the 
respective directions (x, 2); g is the gravitational acceleration in the negative 
z-direction; po is the density at  temperature To; 01 is the coefficient of thermal 
expansion; and v and K are respectively the coefficients of kinematic viscosity and 
thermometric dsusivity. In  equation (2.5) the linear part of Total has been sepa- 
rated out and appears as the second term. 

Cross-differentiating the first and third equations of motion in order to eliminate 
the pressure, p ,  and defining the y-component of vorticity as 

(2.6) 
we have (2.7) 

ZL = a@iaz, w = -a@px (2.8) 

so that ?j = V2$. (2.9) 

@/at = J ($ , r ) -gaaT /ax+~V~?j ,  (2.10) 

(2.11) 

v = Kd-lV', t = d2K-lt ' ,  (x ,z)  = d(x',Z'), T' = T/AT,  (2.12) 

p'/p,-, = -aT' (2.4) 

aT/at-wATld+~.VT = K V T .  (2.5) 

7 = aupz - awlax, 

arlat + v . vq = - g a  aTpx + v ~ 2 9 1 .  

We inbroduce the stream function, $, through the definitions 

Our system then becomes 

a q a t  = J($, T )  - d-uT a$px  + K V ~ T .  

Finally we non-dimensionalize the system by means of the definitionst 

where the primed quantities are non-dimensional. Then equations (2.10) and (2.1 1) 
become arlat = J($, 7) - g.n a ~ p x  + av27, (2.13) 

a q a t  = J($, T )  - a$lax + V ~ T ,  (2.14) 

where all of the variables are non-dimensional, the primes have been dropped and 
the following non-dimensional parameters appear: 

(2.15) 
Prandtl number: a = V / K ,  

Rayleigh number: B = gaATd3/~v. 

The boundary conditions are based on the assumptions that the boundaries, 
z = 0,  z = 1, are perfect conductors of heat and are flat and stress-free. Then the 
conditions are 

$ = 0, a2$/az2= 0, T = 0,  on z = 0,1.  (2.16) 

f The manner of non-dimensionalizing the equations is arbitrary and is not important 
unless one wishes to use the non-dimensional system either for making order of magnitude 
arguments about the variables or for trying to conjecture about the magnitudes of the 
various terms. We merely point out here that with the present scheme for BBnard convec- 
tion the variables show very little change when the Prandtl number is varied over more 
than four orders of magnitude. However, the stream function and, consequently, the 
velocities show a strong dependence on the Rayleigh number as would be expected. 

1 

4-2 
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When rigid boundary conditions are chosen, the second condition becomes 

a@jaz = 0. (2.17) 

However, in this case the method of expansion in the following section is too 
cumbersome and a different technique must be used. 

3. Expansion in terms of eigenmodes 
In  accord with theremarks in the introduction we assume that the evolvedmotion 

field after instability has the form of two-dimensional rolls, independent of the 
y-direction and with a basic horizontal wave-number denoted by a. Then a general 
spatial representation which satisfies the boundary conditions is 

M N  

m = l  n = l  
@ = I: C amnsinmnaxsinnnz, 

M N 

m=O n=l 
T = C bmncosmnaxsinnnz, 

where the a,, and bmn are generally functions of time. This representation, in fact, 
is composed of the eigenfunctions of the linear stability problem and if M and N 
are allowed to become infinite the representation is a complete orthogonal set. In  
our treatment we shall truncate the representation by choosing finite values of 
M and N so that the representation will be only approximate. The accuracy of the 
method of solution is discussed in connexion with specific solutions which are 
presented in 5 5. 

If expressions (3.1) are substituted into equations (2.13) and (2.14) and if we 
multiply these equations respectively by sinpnax sinqnx, and cospnax sin qnz and 
integrate the equations from x = 0 to x = I/a and z = 0 to z = 1, we derive a set 
of non-linear ordinary, differential (in time), equations for the amplitudes of the 
harmonic components. These are 

UEap 
bpq = - fln2(P2,2 + apq - n(p2a2 + @) bpp 

n2g P-1 q-1 

+ ~ _ _ _  ( z c (mq-np) [(P-m)"2+ (q-n)z~amnap-rn,q-n 

+ C 

4(p2a2 + q2) nL= 1 n = l  

C 
M N  

m=p+l  n=q+l 

$1 q-1 

m=p+l  n=1 

X N 

m=p+l n=q+l 

M q-1 

na=p+l n = l  

p-1 N 

m = l  n=q+1 

(mq - np) [ (p  - m)'a2 + (p - n)Z - (m2a2 + n2)] fim-p,pt--qamn 

+ C , C [P(%-~)+WI [m2a2+(~-n)21cc,-p,nam,,-n 

+ C C [ ~ ( ~ - ~ 2 3 ) + n ~ I [ ( m - ~ , ) 2 a 2 + n 2 - ( m 2 a 2 + ( n - ~ ) 2 ) 1 ~ m , n - q ~ ~ - - p , n  

+ C C (np-mq) [ ( ? n - ~ ) ' a ~ +  (q-n)21amnam-p,q-n 

+ c. C rP(q - n) - mq1 HP - + n21 ~ m , n - p p - m , %  

m = l  n=q+l -1 
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M 

+ L c  
m=p+ 

(3.3) 

where 0 6 p < M ,  1 < q < N and 6 = 4 when p = 0 in (3.3) otherwise 6 = 1. The 
superdot on the left side of each equation corresponds to a time derivative, 

These equations must be integrated in time so that a suitable set of initial condi- 
tions must be given. Generally for a given value of CT and a supercritical value of R 
an arbitrary disturbance is introduced initially. The problem is to find the behaviour 
of the harmonic amplitudes as functions of time. For M = 2,  N = 2, steady analytic 
solutions have been found for special values of the non-dimensional parameters 
(Veronis 1965a, 1966). For larger values of M and N no analytic solutions have 
been found and it has been necessary to integrate the equations numerically. The 
procedure is described in the following section. 

4. Method of solution 
When M and N are larger than 2, the system of equations becomes very cumber- 

some. However, with electronic computers it is possible to treat fairly extensive 
systems of this type. 

The specific approach taken here is the following: We choose a maximum total 
wave-number, K .  By ‘maximum total wave-number’ we mean that the sum of the 
x and x wave-numbers cannot exceed K ,  i.e. p + q < K or m+ n < K. We then 
follow the behaviour of all components whose total wave-number is K or less. In  
the largest system analysed, K was chosen to be 10 so that all modes of behaviour 
with p + q < 10 were allowed. We show the representation as modal combinations 
(m, n) in figure 1. The present type of truncation was chosen because it turns out 
that only alternate diagonals contain non-vanishing modes (shown by crosses in 
the lattice of figure 1). In  particular, with the type of symmetry that exists for the 
present problem all modes such that m + n is an odd number vanish. Hence, by 
taking into account alternate diagonals we have an efficient manner of treating all 
non-vanishing modes up to a given order. A square array is less efficient. For 
example, a problem was solved with all the terms in the square array m < 3, n < 3. 
It turned out that the component m = 3, n = 3 vanished. But the latter does not 
vanish when other components with m + n = 6 are taken into account. 

Because of the excessive length of the equations for a system as large as that 
which occurs for K = 10, special computer programs were required to make it 
possible to generate the non-linear terms in a form which could be used directly by 
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the computer. The type of programming which was used is reported elsewhere 
(Veronis 1965b). We note here that with I< = 10 the heat equation is represented 
by 30 component equations with a total of approximately 1500 non-linear terms. 
The vorticity equation contains fewer terms. 

When two total wave-numbers interact and produce a total wave-number larger 
than K the interaction is ignored as are all interactions which involve wave-numbers 
larger than K but which produce wave-numbers smaller than K.  Hence the present 

1 I ' \ \ \  

8 - 0 - X  

I I ' \ \ \  

7 --x-0-x 

I I I I I I '\\\ 

%-o-x-o--X-o--X 

-0--x 

0 1 2  3 4 5 6 7 8 9 10 
m 

FIGURE 1. The lattice of modal combinations (m, n) which are taken into account in the 
calculations. Modes marked with a cross (m+n = even number) contribute to the 
behaviour of the system whereas those marked with a small circle (m + n = odd number) 
decay and were left out of the calculation after a few runs showed this decay. The diagonal 
line running from upper left to lower right determines the size of the systems which are 
treated. All modes included between the axis and a diagonal line are included in a single run. 

method of solution is qualitatively similar to an expansion in terms of a small 
parameter because in both methods interactions up to a certain order only are 
allowed. However, the present technique does not involve a linearization procedure 
and the results are presumably more complete than those from a perturbation 
method. 

The equations have been integrated numerically, using an implicit time integra- 
tion scheme; i.e. the time derivative in equations (3.2) and (3.3) were evaluated a t  
the centres of the time intervals. 
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5. Results of calculations 
Anumber of time integrations of the equations for simple BBnard convection was 

made using the method described in the foregoing sections. The results are described 
in the several subsections which follow. First we note how the results are presented. 

For BBnard convection the minimum value, R,, of the Rayleigh number a t  which 
instability to infinitesimal disturbances occurs is equal to 27m4/4 = 657.5 when the 
boundaries are free or slippery. The horizontal scale of the motion at  this value of R, 
is given by a2 = 0.5. 

The Nusselt number, Nu, is defined as the ratio of the vertical heat flux, H ,  to the 
conductive vertical heat flux per unit horizontal area. In  the steady state the 
vertical heat flux must be independent of the vertical co-ordinate, 2, and can there- 
fore be evaluated by the heat flux through the lower boundary, z = 0. Thus 

where the angular brackets correspond to a horizontal average. With equation (3.1) 
for T, equation (5.1) can be written as 

AT AT 
H = K - - K - -  C nmbo,. 

d d n=l 

Hence, the Nusselt number is given by 
Hd N 

NU = __ = l -T C do,. 
KAT n= 1 

(5.3) 

We present our results as plots or tables of Nusselt number us. RIR,, the ratio of the 
Rayleigh number to the critical value when a2 = 0.5. 

(a) Accuracy of solutions 
I n  the integration of the equations the system invariably settled down to a steady 
state. The criterion for convergence was taken as 

lf’+l-f’l < 0~0001, (5.4) 

where f represents each Fourier amplitude a t  time t = r a t .  It would have been 
preferable to incorporate the time increment, At, into the criterion but that was not 
done for this set of runs. Hence, cases with larger values of At were required to 
satisfy a more stringent criterion than those with smaller At. However, the results 
were found to be accurate to three and, in many cases, four significant digits when 
different values of At were used for the same run. Hence, we can rely on three 
significant digits for the amplitudes of the Fourier components and for the heat flux. 
I n  some of the runs where R was held fixed for different values of the Prandtl 
number we present four significant digits where the differences are small. 

(b )  Validity of the results 
A measure of the validity of the results is given by the degree of agreement between 
runs with different values of K ,  the maximum wave-number in the representation. 
It turned out that the reliability of the values of heat flux as a function of K 
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depended on the values of the Rayleigh number (not surprising) and the Prandtl 
number. In  general, larger values of R required a larger representation as would be 
expected. Also, smaller values of (T required a larger representation. 

In table 1 we list the steady-state values of N u  as a function of R for K = 2,6,8,10 
for (T = 6.8 (corresponding to water) with a2 = 0.5. The case K = 2 is a special one 
since it is independent of (T. The relation between Nusselt number and Rayleigh 
number for K = 2 can easily be derived analytically and is 

H = 3 -  2Rc/R. (5.5) 

Hence, values of N u  for K = 2 are listed in the right-hand column and apply to all 
values of (T. 

Elf4 K = 6  

1 1 
1.1 1.18 
1.2 1.34 
1.4 1.61 
2 2.14 
3 2.68 
4 3.04 
6 3.55 
8 3.92 

10 4.22 
15 4.76 
20 5.13 
30 5.61 
40 5.91 
50 6.11 

K = 8  

1 
1.18 
1.34 
1.61 
2.14 
2.68 
3.04 
3,55 
3.93 
4.24 
4.84 
5.30 
5.99 
6.49 
6.86 

K = 10 

1 
1.18 
1.34 
1.61 
2.14 
2.68 
3.04 
3-55 
3.93 
4.24 
4.85 
5.33 
6.08 
6.68 
7.16 

K = 2  

1 
1.18 
1.33 
1.57 
2.00 
2.33 
2.50 
2.67 
2.75 
2.80 
2.87 
2.90 
2.93 
2.95 
2.96 

K corresponds to the size of the system or the total wave-number (cf. 8 4). 

TABLE 1. Nu vs. R/Rc for CT = 6.8 

For the case of water (cr = 6.8) we see that the representation given by K = 6 
gives results for N u  identical (to three significant digits) with the results given by 
the better representations K = 8 and K = 10 when R < 6R,. Even at  R = lOR, the 
discrepancy is very small ( < 9 yo) but above lOR, the values of N u  for K = 6 fall 
below those given by K = 8 and K = 10. We shall accept results which agree to within 
1 % of those of the next higher approximation. Hence at  R = 20Rc we accept the 
Nusselt number given by K = 8. Even at 30Rc the K = 8 result differs from that 
using R = 10 by only 1.5 yo. Hence, the value for K = 10 very likely satisfies the 
above criterion of acceptability because an increased representation always results 
in a sharp decrease in the discrepancy (note, for example, the values for R = 40R, 
and R = 50Rc for K = 6 , 8  and 10). 

We shall investigate the dependence of N u  on (T shortly. However, for our present 
purposes it is worth our while to note that for CT < 0.025 and at  R = 20Rc the 
representations K = 8 and K = 10 yield values of N u  which differ more and more 
with decreasing (T. At R = 15R, the results for K = 8 agree with those for K = 10 
for (T 2 0.005. 
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Heat flux is an'integral property of the system and therefore provides only the 
crudest check on consistency of solutions for different values of K .  We shall also 
look at  the mean temperature profile in the vertical in a later subsection and can use 
the consistency of this spatial variation of a property as an additional measure of 
validity of results. 

(c)  HeatJEux as a function of Ragleigh number 

The dependence of Nu on R will be discussed for a = 6.8. Other values of a yield 
qualitatively similar results. Quantitative differences are discussed later. 

The system with K = 2 yields values of Nu identical with those obtained from 
second-order perturbation theory (Malkus & Veronis 1958). It is seen from table 1 

(RIR,) NU. - 1 

FIGURE 2. Plot of log ([R/Rc] N u  - 1 )  vs. log (RIR, - 1 )  in the range 2Rc f R < 30Rc. The two 
line segments give the values 1.15 and 1.26 for the power laws in the ranges 2Rc < R < 6Rc, 
6Rc < R f 30Rc. 

that this representation is adequate only for values of R very close to the critical 
value. For R > 2Rc the heat flux is seriously underestimated by this limited 
representation. 

In  figure 2 we show the values of the convective heat flux ([R/R,] Nu- 1) as a 
function of (RIR,) - 1 on log-log paper and as given by the representation K = 10. 
We have already noted that for the range R < 20Rc this representation gives reliable 
results. In  the range R > 6R, the points lie very nearly along the straight line whose 
slope is determined by the relation 

This agrees almost exactly with Jakob's (1949) experimental results where 
log ([RIR,] Nu) N log (R/RC)1.25for Rayleighnumbersinthisrange. For 2Rc < R < 6Rc 
the slope is approximately 1.15 instead of 1.26. 
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( d )  HeatJEux as a function of Prandtl number 

Results have been derived for R < 20Rc and 100 < cr < 0.005. For small values of 
the Rayleigh number the heat flux is insensitive to large changes in cr. In  the steady 
state the Prandtl number enters explicitly only through the non-linear momentum 
terms and these vanish when K = 2.  For larger representations the inertial terms 
have a contribution but this was found to be negligible at low Rayleigh number 
for cr 3 0.005. 

As the Rayleigh number is increased the heat flux has been found to depend 
weakly on Prandtl number. The general dependence is as follows. For the Rayleigh 
numbers, R = 6, 10, 15, 20, the heat flux is slightly larger (but negligibly so) at 

0- ... 100 6.8 4 2 1 0.1 0.025 0.01 0.005 

R = GR, 3.554 3.553 - - 3.58 3.61 3.612 3.614 3.61-1 
K = X  
R = 10R, 4,244 4.241 - - 4.38 4.385 4.390 4.393 4.394 
K = 8  
R = 15R, 4.85 4.85 4.89 4.99 5.06 5.109 5.113 5.114 5.114 
K = 10 
R = 20R, 5.33 5.33 - - 5.62 5.670 5.675 6.676 5G70  
K = 10 

All calculations agree with those of the next lower order in K to within 0.5 yo except for 
the values a t  R = 20R,, where K = 10 has been used. Mrith the present scheme it was not 
possible to go beyond K = 10. 

TABLE 2. Nusselt number as a function of Prandtl number 

(T = 100 than it is at  c = 6.8. Arelatively sharp increase in heat flus occurs between 
(T = 6.8 and cr = 1. For the range 1 2 cr 2 0.01 the heat flux rises slowly but mono- 
tonically, and seems to settle down when cr < 0-01. The size of the increase in Nu 
between cr = 100 and cr = 0.005 depends on the Rayleigh number, being greater for 
larger R. Thus at R = 20Rc the increase is approximately 7 yo, whereas for R = 6R, 
the increase is less than 2 %. However, the monotonic character of the change is 
unmistakeable as can be seen in table 2,  where we have summarized the results. 

At R = GR, the system is adequately described by K = 6 but we show Nuvs. (T 

using K = 8. At R = 10Rc the values of Nu using K = 8 agree with those at Ii = 10. 
For R = 15R, and R = ZOR, we show the results for K = 10. The latter case exhibits 
the same qualitative dependence ofiiTu on R as did the other cases but it should be 
pointed out that the values of N u  for s = 0.025, (T = 0.01 and (T = 0.005 differ by 
as much as 4 yo from the values given by K = 8. M7e noted earlier that the smaller 
the cr the larger the representation required at  a given Rayleigh number to give 
acceptable results and the results at  R = 2022, reflect this point strongly. We shall 
return t o  a discussion of the representation in the next subsection. It suffices here 
to note that at  R = 20Rc the qualitative behaviour of Nuvs.0 is the same as at 
lower Rayleigh numbers. 

Why does the heat flux increase with decreasing Prandtl number Z It is difficult 
to give a general argument from the equations themselves because the equations 
can be non-dimensionalized in several ways so that cr appears in different places; 



Large-amplitude Bdnard convection 59 

moreover, the dependence on (r seems to be an implicit one. As cr is decreased, the 
magnitude of the temperature fluctuations decreases slightly but the velocities 
increase so that the change in the mean temperature maintains the same magnitude. 
Furthermore, as we shall see in the next subsection, at a fixed Rayleigh number the 
scale of the smallest significant disturbance decreases with decreasing cr. Hence, any 
general argument which attempts to explain the present result must take into 
account some aspects of the structure of the system. 

The Prandtl number can be used as a measure of the relative significance of the 
inertial terms in the equations of motion to the convective terms in the heat equa- 
tion or, alternatively, as a relative measure of diffusion of momentum to diffusion 
of temperature. Large values of c imply that the inertial terms in the heat equation 
are negligible and that the important processes which contribute to an out-of-phase 
relation between temperature and velocity fields occur in the heat balance through 
the convection terms. Small values of ff emphasize the out-of-phase effects of the 
inertial terms in the momentum equations. From our present findings we note that 
smaller heat flux at larger c indicates that the out-of-phaseness introduced by 
fluctuating interactions of temperature and velocity fields appear to be more 
destructive to efficient transfer of heat than are corresponding effects of inertial 
terms. Of course, this speculation is dependent on the dynamics of this particular 
problem. It is possible that the presence of rigid boundaries or the onset of three- 
dimensional motions would change the characteristic behaviour. 

( e )  The spatial dependence of temperature and velocity 

Figures 3(a) and 3(b)  exhibit the spatial dependence (for half-cells) of $ and 
(qotal- T,)/AT for the case ff = 6.8 and R = 20Rc. We use the representation 
K = 10 for these graphs since it is adequate to represent the physical system. The 
contour lines for the stream function show that the motion field contains the basic 
harmonic with a slight distortion provided by the higher harmonics. Thus the 
motion consists of a single overturning cell carrying warm fluid upward and cold 
fluid downward. The temperature field exhibits characteristic features for large 
values of R, viz. a large mass of nearly isothermal fluid in the centre of the cell and 
mushroom-shaped isotherms. Thus warm fluid is carried from the lower regions 
toward the upper regions and is squashed up close to the upper boundary where 
diffusive processes remove the heat from the fluid. 

Figures 4(a) and 4( b )  show the non-dimensional mean temperature, 
l i  

n= 1 
- z +  C bonsinnm, 

as a function of the vertical co-ordinate, z ,  for the values R = 2 ,4 ,6 ,8 ,  15,20 when 
g = 6.8 and G = 0-025 respectively. It is evident that, as R is increased, a thick 
region in the centre of the fluid achieves a nearly isothermal state in the mean. 
The thickness of the isothermal region increases with increasing R. 

An unmistakeable positive vertical temperature gradient or reversal of tempera- 
ture occurs in the fluid. This has been found to be present for all values of cr. Thus, it 
appears that the fluid creates arefrigeration region; i.e., even though the system is 
heated from below and cooled from above, in the centre band cooler fluid underlies 
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warmer fluid. This result is contrary to one's (or at  least the author's) intuition. It 
should be noted that the amplitude of the positive gradient is small. The temperature 
overshoots the mean value of the fluid by about 6 yo of the total temperature drop 
across the layer. As the Rayleigh number is increased, the region about the middle 
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------- 
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0 1 l a  

( b )  

X 

FIGURE 3. Contour lines of II. in (a )  and (T',,,,-T,)/AT in ( b )  in the range 0 < x 6 l /a ,  
0 < z < 1 for the case a = 6.8 and R = 20R, from the representation K = 10. 

of the layer becomes more nearly isothermal with small kinks of overshoot before 
the band joins to the sharp gradient region near the boundary. 

Another point worth noting is that smaller values of r~ are accompanied by 
slightly smaller temperature fluctuations but correspondingly larger velocities. 
Hence, the mean temperature profile is as distorted from the linear profile for small 
cr as it is for larger CT. 
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FIGUFCE 4. The mean temperature, (Ttoia, - T,,)/AT as a function of z for the cases R = 2,4 ,  
6, 8, 15, 20 when cr = 6.8 in (a )  and u = 0.025 in (b) .  The nearly isothermal region in the 
centre band increases in thickness as R increases. The small negative gradients noted in 
the text are evident for R >, 4. 
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FIGURE 5. The vertical profile of the mean temperature with the three representations 
K = 6 ,  8, and 10 for the cases CT = 6-8, R = 20Rc in (a) ,  and CT = 0.025, R = 15Rc in ( b ) .  
The agreement of successive approximations is a measure of the validity of the repre- 
sentation. 
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We have discussed the validity of the results at different points in the foregoing 
discussion. The convergence of the successive approximations to the real steady- 
state value may be seen with more clarity in figure 5, where we have plotted the 
mean temperature us. the vertical co-ordinate. In figure 5(a) we exhibit such graphs 
for the case cr = 6.8, R = 20R, with K = 6,8 and 10. It is clear that the representa- 
tion K = 6 is definitely inadequate. However, the cases K = 8 and K = 10 nearly 
coincide so that one has considerable confidence that the results are acceptable in 
describing the system. 

For cr = 0.025 the curves are nearly the same as for cr = 6-8. In  this case, the 
system K = 6 deviates further from the K = 10 system than in the previous 
example. Also, because the representations K = 8 and K = 10 give results which 
differ a bit more, one cannot conclude from such a comparison that the latter is 
a good description of the system. However, the curve for K = 10 does exhibit the 

0. 
A - 1 

0: 100 6.8 1 0.2 0.1 0.025 

4.22 4.22 4.31 4.34 - 4.345 2-4 
0.75 - 4.235 4.32 4.35 - 4.36 
0.8 4.24 4.24 4.32 4.350 4.36 4.36 
0.85 4.24 4.23 4.30 4.34 - 4.35 
0.9 4.23 4,22 4.27 4.31 4.315 4.32 

TABLE 3. Values of N u  at R = 10R, as R €iiunction of ct and @ 

same characteristic behaviour as is seen in other cases where the results differ from 
those with K = 8 by a negligible amount. For example, the mid-region is very nearly 
isothermal and there is no evidence of more than one reversal of temperature up to 
the midpoint of the fluid. It is for this reason that we have made use of the results 
for cr = 0.025, R = 20Rc in our earlier discussion. 

When the Rayleigh number is dropped to 15Rc with r~ = 0,025 the cases K = 8 
and K = 10 agree quite well as can be seen in figure 5b. 

From the foregoing results we see that keeping the Rayleigh number fixed and 
decreasing the Prandtl number means that a larger representation is required to 
describe the system. Thus, smaller scale motions are evidently generated at  smaller 
values of cr and the dependence on Prandtl number is reflected in the internal, 
detailed structure of the motion and temperature fields. Strong dependence on 
CT should manifest itself more in the rigid boundary case where motion must satisfy 
a non-slip condition and a viscous boundary layer must necessarily exist. 

(f) Heat Jlux as a fuizction of wave-number 

A set of runs was made to determine the Nusselt number as a function of wave- 
number, a, at R = lOR, for several different values of cr. The results with the 
representation K = 6 are summarized in table 3. With K = 6 there is an uncert'aiiity 
in the absolute values of N u  which is greater than the differences between the N u  
values at  different a. However, for a relative comparison the figures suffice, We 
note that for this relatively small value of R the wave-number at which maximum 
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heat flux occurs lies between a = 0.75 and a = 0.8 and therefore is somewhat larger 
than the critical wave-number at  marginal instability. Herring (1963) found a much 
stronger dependence at  very large Rayleigh numbers. 

The heat flux as a function of Prandtl number also changes as a function of a. 
At a = 0.9 there is less dependence on g than there is at  a = 4212 since Nu has 
increased slightly at g = 100 and decreased at (T = 0.025. Thus the range of Nu 
has been decreased. 

6. Comparison with previous calculations 
The present calculations are valid over a much larger range of Rayleigh number 

than those of Malkus & Veronis (1958). The latter expanded the variables in terms 
of a parameter which was effectively (RIR,- l )&  and the sixth-order results which 
were derived (p. 239) were assumed valid in the range below 3R,. The present results 
show that the previous calculations were, in fact, valid only for R < 2R,. 

Kuo’s (1961) calculations of the steady system were based on the expansion 
parameter 7 = (1 - RJR)i and his results checked in successive approximations over 
a range extending to 8R,. His method differs from the present one in two respects. 
He used a perturbation parameter and we do not. Also, the specific terms which he 
retained were determined by his ordering procedure, whereas in our case we simply 
take into account all terms up to a given total wave-number. We rely on the repro- 
ducibility of results through successively higher representations as a check on 
convergence and Kuo used essentially the same criterion. The Nusselt numbers 
from the two calculations (Kuo used g = 10 and our results are for g = 6-8, but the 
system is insensitive to the change in c at these small Rayleigh numbers) are 
compared below : 

R/Rc ... 2 3 4 6 8 

Kuo’s NU 2.14 2.66 3.02 3.50 3.85 
Ours NU 2.14 2.68 3.04 3.55 3.93 

We have used KUO’S values as computed from his S4). The results given by &‘@)in 
his paper involve a mixing of orders and turn out to be 8 % higher at R = 8R, than 
the calculations in this paper. 

Kuo derived an exponent of 1.19 in the relation between heat flux (S4)) and 
Rayleigh number. This is probably due to the fact that he measured the slope for 
R < 8R, and in that range a single straight line on the log-log plot would give 
something between our values of 1.15 for R < 6R, and 1.26 for R > 6R,. 

Our results and Kuo’s, therefore, agree quite well in the range of overlap. This 
agreement indicates that his expansion procedure is sound for R > Re. When 
motions can occur for R < R, (finite amplitude instability) his expansion parameter 
is probably less useful since it can exceed unity and the question of the radius of 
convergence is raised. The mixing of terms involved in his derivation of Sd) values 
is probably also unacceptable as a good measure of the heat flux. Kuo presented 
the X(d)values as a possibly better approximation but he had no recourse to a more 
exact answer for comparison at larger values of R. It is, however, remarkable that 
his method of solution using an expansion procedure should give the precision that 
it does at values of R so far above the critical value. 
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In  his discussion of the mean temperature profile Kuo points out that a broad 
band of fluid centred about the middle of the layer is isothermal. Our results show 
that this mid-region is nearly isothermal but has a slightly stable gradient. Kuo’s 
figure also shows this feature although he does not mention it in his discussion. 

Herring (1963) has calculated the heat flux for a model in which all non-linear 
interactions which do not involve, or contribute to, the mean temperature field are 
omitted. The calculations are independent of CT since his system of equations does 
not involve CT. His results up to 15Rc are shown in figure 6 together with those from 
the present calculations for water and mercury. It is evident that the omission of 

2‘ 1 
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FIGURE 6. Values of Nu 2)s. RIR, up to  R = 15R, for the cases cr = 6.8 and CT = 0.025 are 
compared with Herring’s values (upper curve). 

these non-linear terms leads to a heat transport which is significantly higher than 
that derived from the complete system. The percentage variation is larger at larger 
Rayleigh numbers. At R = 15Rc Herring’s result for the convective heat flux is 20 % 
larger than the value for CT = 6.8 and the discrepancy can be expected to increase 
for larger R. Herring’s calculations give numerical solutions of the model equations 
proposed by Malkus (1 954) and were not intended to give exact results. However, 
his equations are much simpler than the complete system and they provide a 
remarkably good first approximation to the heat flux. 

One conclusion from the foregoing comparison is that the non-linear terms which 
do not involve, or contribute to, the mean temperature field decrease the heat flux. 
This was Malkus’s (1954) hypothesis about the role of these non-linear terms in his 
theory of turbulent convection. 

In  Herring’s calculations the mean temperature field had a region of positive 
gradient just outside the sharp gradient region near the boundaries. From the 
present results we note that this positive gradient is not removed by the action of 
the fluctuating non-linear terms. 

5 Fluid Mech. 26 
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7. Discussion of the results 
We discuss here the implications of some of the qualitative results of the foregoing 

investigation. 
Since all of the integrations settled to a steady state, it appears likely that further 

calculations for much higher Rayleigh numbers would show steady-state behaviour. 
Deardorffs (1964) study of the two-dimensional system at a Rayleigh number of 
675,000 also showed steady-state behaviour. Apparently the two-dimensionality of 
the system must be relaxed to allow for vortex stretching in order for transient 
motions to be maintained. However, admitting possible phase shifts through a treat- 
ment of multiple, overlapping, two-dimensional rolls may give rise to transient 
behaviour. We can only speculate about this possibility at  present since it is evident 
that calculations must be performed to settle the issue. 

It has been speculated in the past (Ledoux, Schwarzschild & Spiegel 1961; 
Kraichnan 1962; Spiegell965) that when the Prandtl number is small, as it is for 
stars ( M heat is transported largely by molecular or radiative processes. From 
our results we find that the convective heat flux is largely independent of (T but the 
direction of change shows an increase of heat flux with decreasing t ~ .  Furthermore, 
the mean temperature profile is as distorted by convective processes for small c as 
for large. Thus, our results show a qualitative dependence which does not agree 
with the more heuristic arguments used by workers in the past. 

It is possible to give a plausible argument to show why the present results differ 
from those deduced from the assumption that the fluid is turbulent. In  the latter 
case we assume that heat is transported upward by blobs of fluid. It is plausible in 
this case to assume that the kinetic energy which is generated is due solely to the 
conversion of the potential energy of the stratification. The vertical velocity then 
corresponds to the free-fall velocity. Between the bottom boundary and the top of 
the bottom boundary layer the temperature changes by an amount at  most equal 
to +AT. Thus the potential energy of a warm blob of fluid near the bottom boundary 
can be evaluated as PE < +gpaATd. If we assume that this potential energy is 
converted completely to vertical kinetic energy, we have 

w2 < gaATd. (7.1) 

Hence w d J(gaATd).  (7.2) 

H = d T / d  +(zT), (7.3) 

T N &AT (7.4) 

The vertical heat flux can be derived from the heat equation 

where the superbar corresponds to a vertical average. Now, writing 

and assuming that w and T are in phase, we have 

or 

Hence, the maximum convective heat flux at a given value of R is proportional to 
,/CT and will consequently decrease as (T decreases. In  the limit of small cr we would 
then have H w KATld; (7.7) 
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that is, heat is transported by conduction alone. It is also evident that the tempera- 
ture profile is linear in this case because the distorting term ( w T )  tends to zero as 
cr does. As a consequence, the estimates (7.2) and (7.4) for w and T are obviously too 
large so that we have only a weak upper bound on the expression for the heat 
transport. But the point is that it is an upper bound and nevertheless decreases as 
CT decreases. Incidentally, it is interesting to note that expression (7.6) gives the 
same dependence on Rayleigh number for the convective heat flux as Howard ( 1963) 
derives as a first approximation. Thus our crude estimate is in agreement with the 
conclusions of other workers but it is at odds with our numerical results. 

Now fixing the Rayleigh number and varying (r can be achieved by allowing K to 
change but keeping ATIK as well as g, a, v and d constant. Hence (7.2) can be 

(7.8) 
rewritten as w < J(gaATd) = ( R v d 3 k ) ) .  

Thus for the heuristic model w behaves like .JK. 

In  our numerical calculations we note that the velocity, w, was non-dimensional- 
ized by w = Kd-lw'. The amplitudes of w' for the case R = 20R, were 31.1 for 
(r = 6.8 and 32.3 for cr = 0-005; i.e. a change of 3 orders of magnitude in r~ produced 
a negligible change in w'. Thus we may conclude that w' is effectively constant and 
therefore w behaves like K. Hence, the magnitude of w corresponds to the square of 
the free-fall velocity. 

The foregoing argument accounts for the discrepancy between our numerical 
results and those deduced for fully turbulent flow. The different behaviours are 
associated with the form of the motion and temperature fields. In  the case of the 
single cell fluid particles receive positive buoyancy from the lower boundary, move 
upward and are driven horizontally to the region of descent as they give up their 
excess heat and acquire negative buoyancy. In  this sense they are 'memory' 
particles and can be accelerated through repeated cycles of motion. Turbulent 
blobs receive an injection of positive (negative) buoyancy near the lower (upper) 
boundary, attain a free-fall velocity and then are destroyed. For each cycle the 
process must begin anew and particles have no memory of their history. Hence, 
inertial processes can cause the particles to accelerate to a velocity faster than 
the free-fall velocity in the case of single large cells but not when the flow is 
turbulent. 

Finally we recall that the structure of the mean temperature field shows a reversal 
of gradient in the body of the fluid. The convective inertia of the temperature field is 
fundamental in giving rise to this reversal. Certainly one would expect apriori to see 
a monotonic gradient but the present calculation shows this not to be the case for 
two-dimensional motions. The plausibility argument given earlier for the behaviour 
of H on small CT in fully turbulent flow showed that the mean temperature profile is 
essentially linear in this limit. A more quantitative analysis for arbitrary cr would 
appear to be necessary to show whether there is a region of stable stratification. If 
the structure of the mean temperature field as deduced here carries over to the three- 
dimensional turbulent case, it is possible that oscillatory motions can be generated 
because at least in part of the fluid a restoring force is available to maintain gravita- 
tionally stable oscillations. This point may be important in trying to construct 
theories of large-scale horizontal motions in geophysical phenomena where the sign 

5-2 
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of the vertical temperature gradient plays a fundamental role in determining the 
motions which may be possible. 

I am indebted to Dr R. Jastrow, who generously made available the computing 
facilities at the NASA Institute for Space Studies; Mrs J. Webster for programming 
some of the subroutines; Mr P.Schneck for his continuous assistance with the 
program and for applying his profound knowledge of the 7094 system to make the 
program more efficient; Mr P. Calderone for his help in scheduling the runs and 
getting the results out quickly; Professor M. Stern for a discussion leading to the 
turbulent model in $ 7 ;  and the National Science Foundation for support under 
contract no. GP 2564. 
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